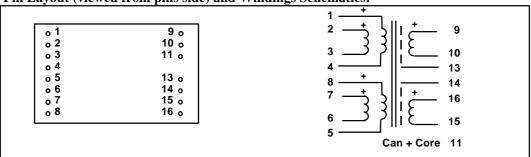
AB LARS LUNDAHL

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone: Int. +46-176 139 30 Fax: Int. +46-176 139 35 Nat. 0176-139 30 Nat. 0176-139 35


Audio Transformer LL1545

LL1545 is a general purpose audio transformer, with a variety of connection alternatives. The transformer is built up from two coils, each with a secondary winding surrounded by shields and two primary windings. This structure results in an excellent frequency response. The transformer can be used in many different applications, such as a high impedance line input transformer (accepting signal levels of 22 dBU @ 40 Hz with primaries in series), a split transformer or as a medium impedance microphone input transformer. The LL1545 is made with a mu-metal core, and is housed in a mu-metal can.

Refer to the back side of this sheet (or separate sheet) for termination alternatives.

Turns ratio: 1+1+1+1:2+2Dims: (Length x Width x Height above PCB (mm)) $37 \times 22.5 \times 14.5$

Pin Layout (viewed from pins side) and Windings Schematics:

Spacing between pins: 2.54 mm (0.1")
Spacing between rows of pins: 22.86 mm (0.9")

Weight:46 gRec. PCB hole diameter:1.5 mmStatic resistance of each primary (average): 147Ω Static resistance of each secondary (average): 295Ω Self resonance point:> 220 kHz

Recommended load for best square-wave response

(Termination alternative A below): $6.7 \text{ k}\Omega + 470 \text{ pF}$

Frequency response (source 600Ω , load (6.7 k Ω + 470 pF) in

parallel with 56 k Ω): 10 Hz - 70 kHz +/- 0.5 dB @ 0 dBU

Loss across transformer (at midband with termination as above): 0.3 dB **Core:** Mu-metal **Isolation between windings / between windings and shields:** 3 kV / 1.5 kV

Data at different termination alternatives, showed on the back side of this sheet:

Data at uniterent termination atternatives, showed on the back side of this sheet.					
Termination	Turns	Copper Resistance	Idle impedance	Suggested Use	THD < 0.2% @ 40 Hz
Alternative	ratio	prim/sec	@40 Hz, 0dBU		primary level /
					real source impedance
A	1:1	$590~\Omega$ / $590~\Omega$	$80~k\Omega/80~k\Omega$	$10~k\Omega/10~k\Omega$	$22~\mathrm{dBU}~/~600~\Omega$
В	1:1	$147~\Omega$ / $147~\Omega$	$20~k\Omega/20~k\Omega$	$600~\Omega$ / $600~\Omega$	$16~\text{dBU} / 150~\Omega$
C	1:2	$147~\Omega$ / $590~\Omega$	$20~k\Omega/80~k\Omega$	$600~\Omega$ / $10~k\Omega$	$16~\text{dbU} / 150~\Omega$
D	1:2	37 Ω / 147 Ω	$5 \text{ k}\Omega / 20 \text{ k}\Omega$	$200 \Omega / 1 k\Omega$	10 dBU / 37.5 Ω
E	1:4	$37 \Omega / 590 \Omega$	$5 \text{ k}\Omega / 80 \text{ k}\Omega$	$200~\Omega$ / $10~k\Omega$	10 dBU / 37.5 Ω
F (Split)	2:1+	$590 \Omega / 295 \Omega + 295 \Omega$			
	1				
G (Split)	1:1+	$147 \Omega / 295 \Omega + 295 \Omega$ Left side can also be connected as B _{CenterTap} (1:1+1)			
	1	or D (1:2+2)			